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IABSTRACT
Two dimensional steady symmetric incompressible laminar flow past

a class of blunt and sharp nosed bodies is investigated in optimal co-

j ordinates. The analysis is carried out for different problem parameters

and the solution is specialized for the cases of the parabola, a semi-

I infinite thin flat plate and the flow against a vertical wall.

The problem is formulated by mapping the body from a Cartesian

plane into a conformal plane by applying a Schwarz-Christoffel trans-

formation. This type of transformation maps the flow field into a

stagnation poin flow in the conformal plane. The governing differential

equations are dev oped in an optimal coordinate system such that the

viscous solutions c ntain the first-order inviscid solution as well as

the solution for f w due to displacement thickness. This type of

formulation of t viscous flow problem in optimal coordinates results

in a coupled et of flow and coordinate equations. A boundary-layer

and pa lized Navier-Stokes analysis is used for the solution procedure

% the present optimal coordinate system.

. Optimal coordinates are computed according to the classical first-

order boundary-layer approximation as well as with a parabolized version

of streamfunction vorticity form of the full Navier-Stokes equations.

A boundary-layer type forward marching numerical scheme is employ to

solve the flow equations in optimal coordinates ernating direct-

io licit (ADI) scheme is used to solve the coordinate equation.4E_

The analysis is carried out for two example problems, a semi-infinite

thick plate and a semi-infinite blunted wedge. The solutions are obtained
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for different body geometries (bluntness parameters) in both examples.

Results for skin friction, displacement thickness, pressure gradient

parameter and optimal coordinates, for different problem parameters,

are presented for unseparated flow cases. Physical quantities such as

surface pressure gradient distribution, skin friction and displacement

thickness for cases of flow past the parabola, the thin flat plate and

flow against a vertical wall are compared with existing numerical and

analytical results.
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SYMBOLS

A constant used in the stretching of the independent variable

a radius of curvature at the stagnation point

* shape parameter for blunted plate

8 Falkner-Skan pressure gradient parameter

$i pressure gradient parameter

b normalised width of the thick plate in conformal plane

C transformed displacement constant

6 semi-wedge angle at downstream infinity

6e displacement thickness

n optimal coordinate component

f streamfunction

g Vorticity function

H inverse scale factor

Hr  scale factor of transformation from optimal to conformal plane

h scale factor of transformation from physical to conformal plane

hmodified streamfunction

K constant of integration used in Equation(2.57b)

L width of the semi-infinite thick plate perpendicular to
the main stream

Z(p) displacement function in conformal coordinate

1 displacement function in optimal coordinates

n exponent used in the transformation relation (4.1)
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N normal independent variable in computational plane

AN step size in N direction

qw value of the conformal coordinate q at the wall

qw normalised value of , - q/a 12

Re Reynolds number based on the nose radius of curvature

ReL  body shape parameter related to the thickness of the plate,
ReL = 2UrL/7rv

S streamwise coordinate in computational plane

AS step size in S direction

t coordinate function

t coordinate function at the surface of the bodyw

u streamwise velocity component

U freestream velocity

U reference velocityr

V nornul velocity component

v fictitious time

AV time step

x component of the Cartesian coordinates

y component of the Cartesian coordinates

z physical coordinate

I conformal coordinate

I optimal coordinate component

, x .POII



Subscripts

in inviscid quantity

m grid point in S direction

n grid point in N direction

S differentiation with respect to S

N differentiation with respect to N

E differentiation with respect to C

T1 differentiation with respect to n

0 freestream condition

w wall condition

o stagnation condition

Superscripts

- normalised quantity

* first sweep of Alternating Direction Implicit (ADI) scheme

n time level preceding star(*) level

n+l second sweep of Alternating Direction (ADI) scheme

total differentiation with respect to
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I. INTRODUCTION

A suitable choice of a coordinate system can simplify the complexity

of a problem especially one involving non-linear partial differential

equations. In some cases the proper choice of independent and dependent

variables reduces the original partial differential equation to an ordi-

nary differential equation, i.e. if similarity conditions exist. The

Falkner-Skan similarity variables are an example of such a case where

the boundary-layer equations reduce to an ordinary differential equation

called the Falkner-Skan equation. Due to the simplicity of ordinary

differential equations, the numerical solution of ordinary differential

equations can be found more accurately and with less effort, in general,

than the numerical solution of the original partial differential equations.

In many singular perturbation problems, which show a boundary-layer

like behavior, the coordinate system chosen for the problem may play an

important role in describing the flow appropriately. In other words, the

solution of boundary-layer type flows may depend on the coordinate system

chosen. This fact did not receive a systematic investigation until Kaplun1

introduced the idea of optimal coordinates which according to Kaplun

removes the singularity.due to the boundary-layer approximation and renders

the boundary-layer solution uniformly valid in the entire flow field for

high Reynolds number flow.

The idea of optimal coordinates, although first mentioned by Kaplun isI2 3 4 5also mentioned in the works of Latta , Friedrichs , Weyl and Segel

The dependence of the boundary-layer solution on the coordinate system is

discussed by Van DykA9 for flow past a flat plate in Cartesian and para-

bolic coordinates. Some other applications of optimal coordinate theory

have been given by Crespo da Silva and Davis
6.
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Kaplun shows that the inviscid high Reynolds number solution is

independent of the coordinate system, since it is governed by a vector

equation. However, he also shows that in a boundary-layer type analysis,

while going from the viscous flow region to the inviscid flow, the

boundary-layer solution produces different types of outer inviscid flows

depending on which coordinate system has been chosen. The coordinate

system which provides the outer flow including the displacement effect,

to a given order, is an optimal coordinate system to that order. There-

fore Kaplun's investigation of the dependence of the boundary-layer solu-

tion on the coordinate system leads to the possibility of developing the

most appropriate coordinate system for carrying out high Reynolds number

flow computations.

Since the introduction of the idea of optimal coordinates by Kaplun,

several investigators have explored the application of optimal coordinate

theory to obtain uniformly valid solutions for singular perturbation

problems in fluid mechanics. A review of the literature related to optimal

7 7coordinates is presented by Legner . Legner shows that the application

of Kaplun's idea is not limited to fluid mechanics problems, but also can

successfully be applied to singular perturbation problems in other applied

j engineering areas. For example, Zauderer's 8  work on defraction problems

involving multi-region transition and Segel's work on the vibration of

convex cylinders in a uniform stream are worth mentioning.

An extension of Kaplun's correlation theorem was made by Van Dyke

who extended Kaplun's first-order theorem to second-order. This allows

one to transform a second-order boundary-layer solution from one coordinate

2
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system to another. A further development of Kaplun's work was presented

7
by Legner who extended the entire optimal coordinate theory to higher

order. Subsequent generalization of Legner's approach to finding optimal

coordinates was provided by Davis.
10

The numerical determination fo coordinate systems for use with the

boundary-layer or Navier-Stokes equations has been studied by several

investigators, see for example, Thompson et al.11'1 2 '1 3 In these methods

in order to generate a coordinate system, a criterlon must be specified

which the coordinate system should satisfy. Therefore, if we set our

criterion for the coordinate system such that the boundary-layer solution

in these sets of coordinates reproduce the inviscid solution including

the displacement effect, the coordinates thus obtained will be optimal in

the sense of Kaplun's definition. DavisI 0 has discussed how the optimal

coordinates can be generated numerically in a manner similar to that used
11

by Thompson et al. for non optimal coordinates.

The advantages of the use of the optimal coordinates with the

boundary-layer and the Navier-Stokes equations for obtaining numerical

as well as analytical solutions are ellaborated in the works of Davis
1 0

and Davis. In the optimal coordinate study by Davis it has been

shown that for a plane symnetric flow, the use of the Legner condition

and the assumption of the orthogonality condition for the coordinate

system results in a set of conformal coordinates. These conformal co-

ordinates, which in the sense of optimal coordinate theory are the best

I coordinates, are used in the numerical scheme of Davis for viscous

flow past the parabola, which becomes a flat plate as the nose radius of

3



curvature approaches zero. This coordinate system shows considerable

improvement over other coordinate systems in the convergence and accur-

acy of the numerical solution. These coordinates were also successful

in removing the leading edge singularity for the flow past the flat plate.

However, the use of conformal coordinates in the case of flow past wedges

(see Davis, U. Ghia and K. Ghia 1 6 ), although showing good resolution and

convergence in most of the flow field, fails to remove the leading edge

singularity except for the special cases of semi-wedge angle equal to

zero, (the flat plate case), and 900 (the vertical wall case). Davis 1 0

has further shown that it may be possible to generate a non-orthogonal

optimal coordinate system which removes the leading edge singularity for

the sharp wedge cases, by introducing the required arbitrariness into

the generation of optimal coordinates.

The present numerical work will show that in optimal coordinates,

parabolization of the Navier-Stokes equations renders a considerable

simplification in the numerical treatment of. the Navier-Stokes equations

and at the same time, that it is possible to achieve good agreement

between solutions to the parabolized equations and the full Navier-Stokes

equations. Previous work on developing parabolized models for the same

type of problems, but not in a fully optimal coordinate system, has been
15 17 1

done by Davis, U. Ghia and Davis, and Werle and Bernstein.
18

In the present analysis, a parabolic form of the Navier-Stokes

equations is therefore developed in a generalized non-orthogonal optimal

coordinate system. The purpose of this investigation is to determine

if there is an advantage in using these optimal coordinates.

4
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I Analytical determination of the present optimal coordinate system

is rather difficult1 since in order to determine the present set of

coordinates it is essential to solve for the flow due to displacement

thickness. Only for a few simple cases of viscous flow is the analytical

expression for the inviscid flow due to displacement thickness known.

In most cases the solution to the inviscid flow due to displacement thick-

ness, must be generated numerically. Therefore in the present analysis,

.a method is developed to numerically generate the optimal coordinates

using a finite difference technique. The flow equations are solved

utilizing a boundary-layer like forward marching technique and the

I coordinate equation is solved using a time dependent relaxation scheme.

Two model problems are considered in order to demonstrate the application

of the present analysis. It is shown through model problems that it is

I possible to numerically generate a set of optimal coordinates and that

the solution obtained from the present calculations shows good agreement

I with the existing analytical and numerical results.

T
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II. GENERATION OF OPTIMAL COORDINATES

It was mentioned in the Introduction chat in order to determine

optimal coordinates in a high Reynolds number flow problem, it is

necessary to know apriori not only the first-order inviscid flow but

also the flow due to displacement thickness. This implies that one

should have the first-order boundary-layer solution at hand in order to

determine optimal coordinates to first order. This information is

available in the form of self-similar solutions for a few simple flows

but in most cases one must resort to a numerical method in order to de-

termine the boundary-layer solution. The inviscid flow due to the dis-

placement effect is then determined from a separate analysis or numerical

calculation.

In the subsequent section a brief description is presented on how

to generate optimal coordinates numerically for a two dimensional in-

compressible symmetric flow. However, the analysis could be extended

to unsymmetric, compressible, three dimensional, etc. flows as well,
7

see Legner.

For the present study we will assume that the form of the optimal

coordinates chosen are such that they produce a separable solution for

the inviscid flow to arbitrary order. These types of optimal coordinates

are described and developed in detail by Davis. 0 However,'a brief10

si-ary of Davis analysis is presented in the following section for

the sake of completeness.

I In the Davis analysis it is assumed that the independent variables

are chosen such that a separable solution exists in the inviscid while

6
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an unseparable solution is confined at most to the viscous region. In

some special cases the viscous region may also be separable. Choice of

such variables represent definite advantages in determining solutions

analytically as well as numerically.

In order to obtain a set of optimal coordinates, hereafter denoted

by a (E,n) coordinate system, the flow field in the physical (x,y) plane

is mapped into a stagnation point type flow by a conformal transformation

of the following form (see Figure 1):

z - f(p+iq) - f() . (2.1)

The quantity - p+iq represents the conformal plane and f is an analytic

function. This type of mapping is used in order to simplify the boundary

conditions which result from relating the optimal to the conformal system

of coordinates. In addition there are certain other advantages to this

type of mapping and these will be elaborated on in a later section.

The outer inviscid flow, which according to optimal coordinate

theory, (see, Legner 7 ) is independent of the coordinate system, is matched

with the boundary-layer solution in the (&,n) coordinate system, by apply-

ing the asymptotic-matching principle, (see, Van Dyke 19 ). In the present

matching of two solutions it is assumed that the boundary-layer solution

in the (E,n) optimal coordinate system is uniformly valid far from the

body, i.e. in the transverse direction. This type of matching of the

two solutions results in a set of conditions for determination of the

optimal coordinate system, the order of which depends on the number of

jterms considered in the expansion in terms of i/vii as the perturbation

parameter. In order to further simplify the condition for the optimal

U 7PI !~ -iu -L



coordinates and to obtain a more useful form, Davis
1 0 uses the Legner

7

form of the outer inviscid streamfunction expansion and we will adopt

the same procedure here. Finally invoking the fact that the inviscid

solution is separable to arbitrary order in the present set of (E,n)

optimal coordinates, the proper form of the outer flow including the

displacement effect is obtained. Using this form of the inviscid stream-

function in Laplace's equation governing the streamfunction, i.e.,

V 2 'in 1 0, together with a suitable coordinate transformation relation

to relate the conformal coordinates p and q with the optimal coordinate

system E and n, the coordinate equation is developed. Finally the

governing differential equations in terms of streamfunction and vorticity

are developed in optimal coordinates from the corresponding equations in
20

a generalized coordinate system as given by Lagerstrom p. 66, by

applying the suitable coc<rdinate transformation manipulations. The

necessary coordinate transformation relation, the coordinate equations

to determine the optimal coordinate system and the flow equations to-

gether with the boundary conditions to solve these equations in optimal

coordinates will be presented in their final forms as given by 
Davis. 10

The details of the derivation will not be repeated here.

In the present analysis the flow field is mapped into a conformal

plane and the corresponding flow is then investigated in the optimal

plane. A typical example of such a mapping of the flow field is presented

in Figure 1, in which the two dimensional flow past a circular cylinder

j is shown in the physical, conformal and optimal plane in Figure la, lb

10
and lc, respectively (see also Davis0).

8
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The transformation of independent variables from the conformal (p,q)

to the optimal ( ,r) coordinate system is carried out using the following

relations

1q
ap J r ac E ZT)

and (2.2a,b)

aq Jr 1 3& an

where J is :he Jacobian of the transformation matrix and is given byr

Jr p q -pn q (2.2c)

The rest of the coefficients of the metric tensor relating the

optimal coordinate system ( ,r) to the conformal coordinates (p,q) are

given as

2 2
a g p 2 + q2
r r2 2  ?1 n

r gr1 2  PP + qqn

2 2 (2.3a,d)
r -

and

2 2_ 2

". -r -r~ -- r
=

--n.q



Similar expressions can be obtained to relate a Cartesian coordinate system

to the optimal coordinates. They are rewritten here as given by Davis
1 0

x2 2 h2a
Sg 2 2  + Ynh r

g12 = xxn + Y En r= h2r

2 2 2 (2.4a,e)Y = 11 x + y h Yr

and

J2 g2 2 h4j2J gciya7- (x Y-XnY) =hJ
E n n r

where

h=I I

We will now write down the governing differential equations in the

, coordinate system.

1. The Navier-Stokes Equations

The non-dimensionalization used in the flow equations is as follows.

All lengths are non-dimersionalized by the viscous length v/Ur, where v

is the kinematic viscosity and Ur is the reference velocity in the flow.

The streamfunction is non-dimensionalized by v and the vorticity by U2/v.
r

Finally the time is non-dimensionalized by v/U 2

r

With this non-dimensionalization the streamfunction equation is given

in the (Q,n) coordinate system as

28r a 2 a

10
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where the streamfunction is defined in the spirit of similarity vari-

ables as

= f( ,n) (2.6)

and the vorticity w is likewise defined as

-- - r--- g(E,n) = - EHg(E,n) 
(2.7)

r

where the inverse scale factor H is given as

S r (2.8)
h 2 cl2  h 

2

r

and H ris the scale factor of transformation relating the optimal (E,)

coordinates to conformal (p,q) coordinates and is given by

H = -r (2.9)
r 2

r

where yr and J are already defined in Equations (2.3c) and (2.3d).r

Similarly h is the scale factor of transformation from the conformal

to the physical plane and is given as

h- f'() , (2.10)

where

C - p--iq (2.11)



The transformed vorticity transport equation is given by

2H 1 20 r  H Jr
g TII 

+  H - r H + Y r (f+f )]gn
0H r

+ 2 r H2Hn + r a r  2 r

H2  yr H2 Yr H2  yr H r H

4 8r 4 8r 8r 8 2rr 4-r ( r 12 +E _. (f+ef) (2.12)

r ' r r + r H

J 2a H 28 H J
r r + r r- - fn]g
Hfn yr  H yr H Yr n

28 a
0 r 2r 1

r r r

The boundary conditions are given as follows. The no-slip and zero

injection conditions give at T = 0

f(&,O) = 0

and (2.13a,b)

f n(,0) o

The asymptotic boundary condition far from the body gives

f(Q, n) - n-C

and as n - c (2.14a,b)

g( ,n) 0

where C is a constant and from the general definition of the displacement

thickness Davis10 has shown that C is a displacement constant in optimal

jcoordinates.

i
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We will be considering flows past semi-infinite bodies for which

self-similar solutions exist to the boundary-layer equations at downstream

infinity. Therefore the downstream boundary condition as E ®, is

given by the corresponding boundary-layer form and hence can be written

as follows.

The coefficients ar/yr and J r/yr - 1 as - , since the present

coordinates become conformal coordinates in this limit. Also a r/yr

f & f' f' Wg' g, and g,, 4 0 at downstream infinity. The stream-

function Equation (2.5) therefore reduces to boundary-layer form and

is given by

f = g (2.15)fnn

and the vorticity Equation (2.12) becomes

gn + fgn + (1-2a)fng o 0 (2.16)

where 8 is the Falkner-Skan pressure gradient parameter and is given as

B . 2_ (2.17)

where 6 is the slope of body surface asymptotically far downstream and

therefore is a known quantity.

It is interesting to note that the Equations (2.15) and (2.16) are

the similarity form of the boundary-layer equations. This shows that

the variables chosen for the present analysis are self-similar in nature.

Also substituting f - g into the vorticity equation (2.16) and inte-

grating the resulting equation with respect to n once and making use of

the boundary condition on f and the higher order derivatives of f as

n - ", the vorticity Equation (2.16) reduces to

i
I 13
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22
fnn + ffn + a (1-f) 2 0 (2.18)

which is the familiar Falkner-Skan equation (see Schlichting 
2 1 ).

Additional relations required to solve the flow equations are given

in the following. From Equation (2.8), it can be shown that

H 2h

H = E + H, 
(2.19)

H h Hr

and

H

Hn 2h + H r 
(2.20)

H h Hr
.This completes the description of the Navier-Stokes equations

together with the necessary boundary conditions in the (E,n) coordinate

system. The derivation of the coordinate equation will be briefly out-

lined in the subsequent section.

2. The Coordinate Equation

The coordinate equation is derived based on the inviscid flow in-

formation in the following way. It is noted from the viscous stream-

function f given by Equation (2.6) and the outer edge condition on f

given by Equation (2.14a) that the outer inviscid streamfunction in

E,n coordinates is represented as

*in w E(n-C) (2.21)

If the flow is irrotational to arbitrary order, then the streamfunction

should satisfy the Laplace equation 2 in 0, which can be written in

our case as

V2((2n-C)) - 0 , (2.22)

14



Assuming pq - &n and treating p in a similar manner as we have treated

the transformed streamfunction * and vorticity w it is possible to obtain

coordinate relations of the form given in the following (see Davis l):

p = ( (2.23)

and

TI (2.24)

q t(&,n)

Making use of these coordinate relations (2.23) and (2.24) and substitut-

2
ing into (2.22) and writing the Laplacian V in the & and n coordinate

system (with the help of the transformation of independent variable re-

lations (2.2a,b) from the conformal (p,q) to the optimal (&,n) coordinate

system) it is now possible to show that the coordinate Equation (2.22)

reduces to

- 2r t a t +2 a t& - 0 (2.25)

where t(Q,n) is the coordinate relation function relating the two co-

ordinate systems through the expressions given in (2.23) and (2.24).

Determination of the (,n) coordinate system amounts to finding the

solution of the partial differential Equation (2.25) with suitable boundary

conditions.

The coefficients ar 8r, yr and the Jacobian Jr' appearing in the

flow Equations (2.5, 2.12) and the coordinate Equation (2.25) can now

easily be expressed as functions of & and n by substituting the coordinate

relations (2.23) and (2.24) into Equations (2.3a-d). This results in

2 22 2 tn i 1
Ir ( +.n t 3  t2

| 15
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2 + n) tt  t j- t +
Br  t 4Ett n3

2 2i 22
Yr ( + -- )t + 2 tt + t (2,26a-d)

t4

and

Et ntJ =i+-i nT
r t t

The boundary conditions for the coordinate Equation (2.25) are pres-

cribed as follows. The coordinate Equation (2.25) is elliptic in nature

and therefore needs boundary conditions around the boundaries in order to

make the coordinate equation problem well posed. Since we will be con-

sidering symmetric bodies, the coordinate system is symmetric and therefore

tE(Ori) = 0 (2.27)

The asymptotic boundary condition in the streamwise and transverse direction

are given as

t(QTn) 1 as c c -

and (2.28a,b)

t( ,ni) vl as ni +

The two boundary conditions given by Equations (2.28a,b) imply that far

from the body in either direction the optimal coordinates become conformal.

The remaining one condition is the boundary condition on t(Q,) at

the surface. It was shown by Davis10 that this condition depends on the

displacement surface over the body and hence it is treated as an unknown.

In the following section it will be shown how an interacting type analysis is

necessary in order to determine this missing boundary condition (t(&,0))

and therefore to solve the flow equations in optimal coordinates.

16
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Referring back to the boundary condition (2.14a) on the streanfunction,

i.e. f - n - C as n - -, it is generally treated as f - 1 as n - - and

C is determined as C(&) as n - - if & and n are not optimal coordinates.

Therefore under normal conditions, one has no control over the function

C(&). However, it was already mentioned that there was one condition

missing from the coordinate equation in order to describe the system in

closed form. In fact the additional condition C(&) - C as n - ,necessary

for determining optimal coordinates, is used in determining the surface

boundary condition t(&,O). This clearly indicates that in order to solve

the coordinate equation in closed form it is essential to solve at least

the first-order boundary-layer flow such that the displacement surface

function C(Q) - C as n - -. Since the coefficients a, r, yr and Jr etc.

are functions of t(&,n), they are therefore unknown and are determined as

a part of the solution. This implies that the flow equations (2.5 and 2.12)

through these coefficients are coupled to the coordinate equations and the

coordinate Equation (2.25) is coupled to the flow equations through--

the boundary condition t(&,O), the determination of which depends on the

successful satisfaction of the condition C(&) - C on the flow equation

solution as n + . Therefore the condition on the displacement surface

C() - C serves as an additional condition on the flow and coordinate

equations such that the coordinates are optimal.

It is now clear that the streamfunction equation boundary conditions

are not over specified if we wish to prescribe f I i and f - n - C as

Tn 4 to determine optimal coordinates. The extra boundary condition on

the streamfunction f(&,n) is replaced by the missing boundary condition

on t(&,n). Therefore the Equations (2.1) through (2.28) represent a

17
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complete set of governing differential equations together with the

necessary boundary conditions in order to determine the optimal coordinates

for two-dimensional plane symmetric flow.

It is interesting to note that the coordinate equation is formulated

based on the inviscid flow information whereas the viscous effects are

confined to the flow equations only. Because of the inherent coupling

between the coordinate equation in optimal coordinates and the flow equa-

tions, an interacting type phenomenon takes place while determining the

viscous flow solution in optimal coordinates.

This brief description of the development of the optimal coordinates

in the case of two dimensional laminar incompressible symmetric flow

10g follows the more detailed analysis given by Davis

The development of the parabolized vorticity and the streamfunction

equations and also the boundary-layer equations are presented in the

following.

3. The Parabolized Vorticity and Stream Function Equations

The parabolized vorticity and stream funcation equations are obtained

from the full Navier-Stokes equation by neglecting all the terms in the

governing differential Equations (2.5) and (2.12), which include second

derivatives in the streamwise (E) direction. Also the cross derivative
a

rterms f~n and E and -. r- g are neglected. The relevant advantages of

the use of the parabolized form of the Navier-Stokes equations are

separately ellaborated in the numerical method of solution section.

It is important to note that this approximation retains all of the terms

which would arise in a second-order boundary-layer theory.

18
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I It can be shown that with the parabolic approximation, the stream-

function Equation (2.5) reduces to the boundary-layer form and is given

by

I f -g (2.29)

The parabolized vorticity equation reads as

I 2H 28 H C
gn + [ H nr H + (f+ff E)gT

H 28 HH a H 2 rHn a H+ I r n +  r +

H 2r H 2  yr H yr H
(2.30)

+ 4 12 2 J H

r r r )r r

S H 2a H 28 H n JK
( -)f Ig + [H)r rn f ]g 0

r rH 7r H T r

I The necessary boundary conditions to close the parabolized streamfunction

and vorticity equation set are as prescribed previously in Equations

(2.13) through (2.18).

4. The Boundary-Layer Equations in Optimal Coordinates

The steady-state boundary-layer equations in optimal coordinates are

obtained from the full Navier-Stokes Equations (2.5) and (2.12) by taking

I the limit of the equations as Reynolds number Re - m, in inner boundary-

layer variables. By making the boundary-layer approximation in Equations

(2.5) and (2.12) it can be shown that many terms drop out and in addition

the remaining coefficients h, Hr9 Yr, and Jr can be evaluated at the body

surface, i.e. at n - 0. These coefficients can therefore be written as

19



hh()

Jr Jr( )

r7r  Yr(

and (2.31a-c)

H - t2 (0)
r

With these approximations the streamfunction Equation (2.5) remains the

same, i.e.

f - g (2.32)

and the vorticity Equation (2.12) reduces to

J H J

gnn +- r (f+f)g - [(I + H )f ng - E f = 0 (2.33)

r ~ ~r r

The inverse scale factor H in the case of boundary-layer can be written as

H 2
_--_r 2t &) (2.34)

H( ,0) h2  h2 ((30)

The expression for the scale factor h is given once the geometry

is prescribed and will be given later in the respective example problem.

Now substituting f = g into the vorticity Equation (2.33) and

integrating the resulting equation with respect to n and evaluating the

constant of integration by making use of the boundary condition on f

and its derivatives as n - =, the vorticity equation can be written as

I
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J 3 Jr HE
f +-r (f+f )f - r2

nrin Yr n T1 7r 2 H n

rf f =- I + -a) (2.35)

We could work with these variables, howevrer it is convenient to instead

develop variables similar to those of Gortler. In order to do this we

define V, a normal velocity like variable, as

V - - f - Ef E(2.36)

Making suitable rearrangements in the Equation (2.35) and replacing f

by F we get the final form of the boundary-layer equations as
J J J

F -- E VF + 2 -- r a=( - 0 (2.37)
r r r

and

V= - F - EF (2.38)

where the pressure gradient parameter 8 is given by

0, = (1 + 2=) (2.39)

In transformed variables, a displacement thickness like variable 6

can be defined as

de' f (1 - F)dn (2.40)

0

3 The necessary boundary conditions to solve the governing differential

Equations ((2.38) and (2.39)) are as follows. The no-slip and zero-in-! I

jection conditions at n - 0 give
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and (2.41a,b)

I 0

The asymptotic boundary condition in the transverse direction gives

F( ,n) - 1 as n -* W (2.42)

The flow is symmetric about the line = 0, therefore the symmetry con-

dition can be written as

F & 0 at & W 0 (2.43)

For the bodies we will be considering, at downstream infinity Jr/Yr - I

and the pressure gradient parameter 8i approaches the value of the Falkner-

Skan pressure gradient parameter $ and the equation reduces to the Falkner-

Skan equation which can be rewritten as

F VF 2+ ( - F2  0 (2.44)

I and
V -- F (2.45)

It is interesting to observe that the boundary-layer equations in the

present coordinates show self-similar behavior and similarity solutions are

automatically recovered whenever similarity exists. It is also important

I to remark that the present form of the boundary-layer equations is similar

to those when written in Gortler variables.

This completes the general analysis for determination of the boundary-

layer equations in optimal coordinates except for the missing boundary

conditions t(&,0). In the following we will develop a scheme to determine

the surface boundary condition on t(&,n).
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I
- 5. The Surface Boundary Condition for the Boundary-Layer Equations

In the course of our previous discussion it was mentioned in Section

II that the coordinate equation is coupled to the flow equation through

]- the surface boundary condition on t(E,n). The optimal coordinate con-

dition states that the transformed displacement thickness C should be

I constant. We will make use of this condition to determine the missing

I boundary condition on t(E,n). Since there is no explicit analytical

relation relating the surface boundary condition on t(E,O) and the

displacement thickness, C in optimal coordinates, we must determine the

value of t(E,n) on the surface iteratively. The iterative relation which

I yields the value of t(E,O) in optimal coordinates is determined in the

gfollowing manner along with some other interesting properties of the

equations.

Let us assume Z and n are the coordinates that are optimal and hence

are to be determined. The coordinates E and t are assumed not to be

optimal but some suitable coordinate system which is used as an initial

guess for the optimal coordinate system. Let us also assume that

f - A(E)f(E,n) , (2.46)

r- A(E)n (2.47)

and

ad B(E) (2.48

where A and B are arbitrary functions of E.

I
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Therf it follows that

--a a' A' -
B' - - (2.49)

Iand

= _(2.50)
I an A

where the prime denotes the differetiation of the dependent variable with

Irespect to E. Using these coordinate transformation relations (2.49) and

(2.50) in the boundary-layer Equation (2.35) along with the relation for

I f given by (2.46) gives

! J
+--- +rA 2 (I + - Bf +

nnn Yr A A' E Tin
: ~(1+ -

2r r

2 2

+ A - ( f) -- B'f- T  0 (2.51)I r i r n
Since the Equation (2.35) is true in general, the Equation (2.51)

_ should be identical except that the unbarred quantities should be replaced

by barred quantities. Comparison of the two Equations (2.35) and (2.51)

then requires that

A2r (-A' -r (2.52)

Ir Yr

&B' - B(&) (2.53)

I (1+ A r

A YBi~~ (254Tr Y

Ii
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and
r A2B,

P- A-- ' (2.55)
r Yr

Combining the relations given by Equations (2.52) and (2.55) we get

2  A'2 rA - 1 + A = -- A B' (2.56a)Yr Yr

which can be simplified to yield

EB' =:=B
-A='( (2.56b)

(1 + A

The above relation is already satisfied by Equation (2.53). There-

fore we can ignore one of the two relations given by Equations (2.52)

and (2.55). Hereafter we will neglect the relation (2.55).

Equation (2.56b) gives

(l + -_ -)
AT

or rearranging we obtain

B' I A'
+ -) (2.57a)

Integrating both sides the Equation (2.57a) we get

B -KA (2.57b)

where K is a constant of integration which will be determined later.

2

25

0 -. = - ,_, ., - - - - -' ' - -J °



Using the relation (2.57b) and (2.53) we can write

+&A 1 =  "(2.58)

Substituting the relation (2.58) into the Equation (2.52) we get

r AB' Jr
K y (2.59)

and from the relation (2.57b) and (2.52) we can write

KA .(2.60)

Now substitution of r/Yr from Equation (2.59) into Equation (2.54) yields
r r

A2 r Bi r i (2.61)
Yr K Yr

Simplifying the relation (2.61) we obtain

A fi (2.62)

where 0i is given as

( + 2--) (2.63)

which can be rewritten as

EH 22 (2.64)=(H 2 )2

Using the relations (2.58) and (2.64) in the Equation (2.62) we can write

0f as
(I 2 ()2H)

__ 4) 1 , H A (2.65)
QH2 ( +A' 2 H) 2 ( A)'

26
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Also we have from Equation (2.60)

dE = K d(A) = K(A)' (2.66a)dE dt

and

A = (2.66b)( K) "

Substituting the relations (2.66a) and (2.66b) into (2.65) we get

( Q H)- -
01 E E (2.67)

Q 2H) 2

Comparing the expression for 8. in (2.67) with 8i in (2.64) we see that

the quantity ( 2H) on the right hand side of Equations (2.67) and (2.64)

determines the pressure gradient parameter regardless of the coordinate

system.

With these relations, we proceed to determine the relations for the

iterative scheme for determining the ( ,n) coordinate system given a (,n)

system.

If Z and coordinates are optimal then we know from Davis 10 analysis

that

f(Z, ) u C as n 4. O (2.68)

where C is a constant which was already mentioned in the earlier discussion.

C is related to the displacement function in optimal coordinates.

In general in the (Q,n) coordinate system (which may not be optimal)

the streamfunction f(Q,n) far from the body is given as

f "n - I(M) (2.69)

27
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with the help of relations (2.45) and (2.46) the Equation (2.69) can be

written as

fA() as -) 0 (2.70)

Comparing the two expressions for T( ,i) given by Equations (2.68) and

(2.70) we get

C = -,Q) (2.71)AQ )

Also we can write from Equation (2.71)

A() = £( )(2.72)

Substituting the expression of A(&) from Equation (2.71) and its derivative

in the relations (2.59) through (2.61) we get

r 
(2.73)Yr i2 Yr

I
I = (2.74)

andI
Oi £(WO), 0 i  (2.75)

Also we can write Jr/Yr in the present coordinate system for the boundary-

layer flow from Equation (2.25d) as

J

r 1(2.76)
Ir t(t+ t&)

Similarly we can write an analogous expression for barred quantities as

- 1(2.77)

28
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From the coordinate relation (2.23) we can write

p= t t (2.78)

Substituting and from the Equation (2.78) into the Equation (2.74)

I we get

t K K( ) (2.79)

Using the relations (2.76) and (2.77) in Equation (2.73) we can show that

1 = ()(())~ 1 (2.80a)
i (Z+ ) i2 t(t+Et E

or

K(-) (-)-) .(2.80b)

I Now using the relation (2.78) we can easily write, after rearranging the

equation (2.80b) as

K = d(&p) 1 dp
d dl d

or (2.80c,d)

I d = d(&p) 1dp
d d 2. d

I which can be simplified to give

dZ 1 d(&L) (2.80e)

d e R i d &

In light of the relation for given in Equation (2.74), the relation

(2,8Qe) is true if and only if K - 1,

29
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Therefore the appropriate relation and the one which can be used

is

t (2.81)

where t is now the needed boundary condition on the surface for the co-

ordinate function t( ,q) and 2 is the displacement thickness function in

optimal coordinates. The quantities t and Z(.) are the corresponding

variables in the guessed (E,n) coordinate system.

This completes the brief outline of the development of the governing

differential equations together with the required boundary conditions for

the two dimensional symmetric incompressible flow in optimal coordinates.

The details of the numerical analysis necessary to solve the given set of

equations developed in this section are elaborated on in the the follow-

i ing section.

I
I
I
I
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III. NUMERICAL METHODS OF SOLUTION

1. Boundary-Layer Solution Method

A marching procedure is made use of in determining the solution of

the boundary-layer equations in optimal coordinates. The only difference

between the present method and the boundary-layer forward marching approach

22used by numerous authors (see Blottner and Flugge Lotz for example) is

that an additional iterative loop has been introduced here in order to

satisfy the condition of optimal coordinates. The coefficients

ar, 0r9 r and Jr which are functions of t, are evaluated at the surface

if they are present in the boundary-layer equation. This fact represents

an advantage of setting the iterative scheme for the optimal coordinate

condition without solving the coordinate equation in each iteration.

This implies that the surface boundary condition t(,O) on the coordinate

Equation (2.25) can be computed once and for all by iterating the solution

vectors of the boundary-layer equations such that the transformed displace-

j ment thickness function C is constant within a prespecified limit of

accuracy. To compute t(E,O) in each iteration the relation (2.81) is

used to update the surface boundary condition t( ,O).

In order to solve the boundary-layer equations, a coordinate trans-

fromation similar to that used by VandeVooren and Dijkstra23 , Davis15

I and Davis, U. Ghia and K. Ghia1 6 is used in the (streamwise) direction

to achieve proper resolution of the flow field in the streamwise direction.

The transformation which gives the appropriate flow field resolution is

given by

S 1 - A/E log(l + E/A) (3.1)
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where A is a constant, the value of which is chosen such that the vorti-

city, g, at the wall drops to one half the stagnation point value at

about S = 0.5, where S is the transformed coordinate. The value of A

which gives such a variation of vorticity g(E,n) at the wall is found to

be equal to 1 for the boundary-layer analysis. Apart from the advantages

mentioned above, the transformation relation (3.1) transforms the semi-

infinite domain of integration in the streamwise (E) direction into a

finite domain in the new independent variable, such that S varies between

0 to 1 as E varies from 0 to -.

It is mentioned by Davis15 that the vorticity g dies out exponentially

to zero beyond a value of n = 5.0 for all Reynolds numbers in the case of

laminar unseparated flow. The boundary-layer equation is therefore inte-

grated up to n = 6.0 with an uniform step size of An.

In order to solve the boundary-layer equations, the momentum equation

which is coupled to the normal velocity equation is linearized with res-

pect to the previous step value and rewritten in new independent vari-

ables as

Jr - r r dS

(-rV) GF+(_E (lF F) _E( rF) F d (3.2)

Then the normal velocity equation reads

SV + F + EF US - 0 (3.3)SdE

where the subscript G stands for the guessed value of the dependent vari-

ables from the previous station or iteration.
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I An implicit finite difference scheme similar to that given by

22
Blottner and Flugge-Lotz is used to solve the parabolic momentum

Equation (3.2). Once the momentum equation is solved the continuity

fequation is integrated with respect to n once to obtain the updated
value of V to be used in the subsequent iteration of the momentum

equation. In the numerical scheme, the F and F derivative termsn nfl

are written in second order accurate central difference form and the S

derivative is written as a two point backward difference. Application

j of such a scheme to the momentum Equation (3.2) results in a tria-

diagonal system of equations in the n direction at each grid line given

by S - constant. The Thomas algorithm24 is employed to invert the set of

simultaneous algebraic equations. The momentum and the continuity

equations are solved simultaneously. The solution vector is iterated on

due to the nonlinearities until the values of the solution obtained in

two successive iterations do not differ by a prespecified accuracy limit.

I Repeating these steps at each grid line at S = constant, the solution

tprocedure is marched from S - 0 to S - 1 to cover the entire semi-infinite

domain in the streamwise direction. In order to initiate the marching

process we need the initial profile of the solution vectors F and V at

0 and also the value of the displacement function 7 in optimal coordi-

nates in order to calculate t(F,0) along the surface of the body. The

displacement thickness in optimal coordinates and the starting values

of the solution vectors F and V at the stagnation point are determined

in the following manner.

33
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It was already mentioned in the Section II on the asymptotic boundary

conditions for the coordinate Equation (2.25) that the optimal coordinates

become conformal at downstream infinity. This implies that the displace-

ment thickness function I() at downstream infinity is the displacement

thickness function . in optimal coordinates. Therefore in order to de-

termine the displacement thickness function T the boundary layer Equations

(3.2) and (3.3) are solved at dowstream infinity. As - , the boundary-

layer equations yield the similarity form as given below.

F vP +B(1 -7 0 (3.4)no

and

V +F - 0 (3.5)I °I
where 8 assumes a value equal to zero for the bluned plate case and

I - 26/r for the blunted wedge problem.

The above set of Equations ((3.4)-(3.5)) can easily be solved with

the boundary condition prescribed by Equations (2.41a,b) and (2.42).

Now writing the derivatives F and F in central difference form a set
of triadiagonal system of equations are obtained and these can easily be

I- inverted by applying Thomas algorithm. Once the solution is obtained,

the displacement thickness 2 is calculated using the Equation (2.40).

Finally, the initial profiles of F and V are obtained by solving the

boundary-layer equations at - 0. Again we note from Equations (3.2)

and (3.3) at - 0, that the boundary-layer equations assume a similarity

form because of the symetric condition F - 0 along the the stagnation

line. The equations at the stagnation line, i.e. at - 0, reduce to
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F rVF + r - F 0 (3.6)
nn Yr n Yr

and

V + F - 0 (3.7)

with the boundary conditions

F 0

at n = 0 (3.8a,b)

V-0

and

F 1 as n .(3.8c)

The Equations (3.6) and (3.7) can easily be solved in exactly the same

manner as in the case of downstream infinity. But in this case the

solution of the boundary-layer Equations (3.6) and (3.7) has to be iterated

on to satisfy the condition of optimal coordinates, in addition to the

iteration required for the nonlinearity of Equation (3.6). Once the init-

ial profile is obtained it is now possible to compute the solution of the

Equations (3.2) and (3.3) in the entire flow field by using a forward

marching process. After the determination of t(&,O) at all of the grid

points on the surface, the coordinate Equation (2.25) can be solved.

The details of the numerical analysis for the coordinate Equation (2.25)

is discussed in the following.

2. Optimal Coordinate Solution Method

The coordinate equation as given by (2.25) is elliptic in nature

and requires four boundary conditions of which three are already specified

by the Equations (2.27) through (2.28a,b). The fourth boundary condition

is determined from the flow equations as mentioned in the preceding section.
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Because of the elliptic nature of the equation an alternating direction

25
implicit (ADI) method, first developed by Douglas , is made use of to

obtain the coordinate equation solution. In order to apply the ADI

scheme a fictitious unsteady term 3t/Sv is added to the right hand side

of the Equation (2.25). The resulting equation is marched in time and

alternated with respect to the independent variables and nf.at each half

time step. The steady state solution is recovered in a two step process

to obtain the asymptotic converged solution of the unsteady differential

equation. Recognizing the fact that the transient solution is of no

importance for the present analysis, certain measures are taken in order

to achieve faster convergence. For example, the coefficient of the term

3t/av is set equal to different constants for different problem parameters

to improve the convergence rate of the ADI scheme.

A transformation of the independent variables is made in order to

confine the domain of integration to a finite region besides providing

the proper resolution in the n and directions and preserving the

uniform step size accuracy in the computational domain.26 The trans-

formation relations which serve these purposes are given in the following

for the n variable and in (3.1) for the variable. The variable n is

replaced by

N + n (3.9)

In Equation (3.1) the constant A as mentioned previously is chosen equal

to 1. The transformation (3.1) together with (3.9) transform the quarter

infinite domain in (C,q) coordinates to a unit square in the computational
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domain of (S,N) coordinates. Using these transformation relations the

coordinate Equation (2.25) is rewritten in new independent variables

(S,N) as

2 2 2B a
dN d2N r dN dS r

tNN (T) + N 2  y SN (  ) ( ) + -
r r

2 a 2_ _2 dS d2S. t r dS
(--+-)t +_ tss Lt (3.10)dE d 2  S yrSSa

The subscripts S,N in the Equation (3.10) represent the partial differ-

entiation of the dependent variable with respect to the independent

variables appearing.

The cross derivative term tSN in the coordinate equations needs a

special treatment because it plays an important role in the numerical

solution of the coordinate equation. The cross derivative term appears

in the equation because of the non-orthogonality of the (E,n) coordinate

system. The coordinate system depends on the displacement effect. The

magnitude of this cross derivative term is also an indication of the

degree to which the optimal coordinates are non-orthogonal, i.e. vary from

conformal coordinates in this case. One must also be careful in formu-

lating the numerical scheme for the cross.derivative since it is well

known that the cross derivative if improperly handled can cause numerical

instability.2 7  In many situations this term is small and can be treated

explicitly 28 in an otherwise implicit scheme. In the present analysis,

in order to be consistent with the numerical scheme, an implicit treatment

of the cross derivative has been developed using a three level finite

difference scheme similar to that followed by Mitchell.29 This type of!
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the treatment of the cross-derivative term allows one to break the single

term t n into combinations of unidirectional derivatives with respect to

the independent variables E and 1. The cross derivative t.. is written

using the three level grid points as shown in Figure 2. Then the cross-

derivative at the grid point m,n can be expressed in second order accurate

Idifference form as

t -f-DF O + DF 6N
AS AS tNnI

+ i _ DF AS
2AS tNlmn - 5lm-l,n AN SSImn

S2DF t + "4 AS
AN 1smn 2 AN SSI 1,nl

DF - 1) OF + 1)

+ +-. 4 ASAN tSAN
AmIn- 2 AN snlm,l+l

(DF + 1)

N t 1 ] (Nsn) (3.11)

The other terms in Equation (3.11) are written as three point central

Idifferences. It can be shown that in order to maintain diagonal dominance

in the inversion scheme, DF should be taken equal to 0, 1/4 or - 1/4

I according to whether the coefficient of the teq term in Equation (3.10)

is zero, positive or negative. Keeping track of this property provides

stability to the system. The ADI merical method of solution using this

difference scheme is described in the following.

' I
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During the first half time step, denoted by the star (*) step, the

ADI algorithm for the coordinate Equation (3.10) is advanced from time

n n n Av
v to v = v + -- by the following relation:

I 2~2 r AN r ( IN*
(N + 2 -r DF, -NS )tN + (N - 2 1 N *S -) t

i Yr as n nn rI 2A N

r rFCI + 4 8rD 2

(4 - DN N S + r + -n S t
Y r TI E Yr E +  r S

+ rS2 + 2 8r DF AS N S
+ - E (r AN n E SSI

8 AN

!-r NNS DF tNr + 2 !r NnS i t
Y nr AS nIm-l,n Yr Nm-in

1I (DF Z) 1
AS2 'r- N St2 AN y r nlSSIm,n-l

(DF - ) a S- ns
I 2 Y t Im,n-i

(DF + 1) $
4 2r AS2 2Y ns E ANSS I,n+1

I (DF+ )4 t
s *N Stn,n+1 V (3.12)

where Av is the time step.
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The starred (*) quantities in Equation (3.12) are considered to be

unknown whereas the dependent variables with superscript n are assumed

to be known from the preceding half time step (n). The Equation (3.12)

is solved along lines of constant S or E. Writing the tN and tNN terms

in central difference form, the Equation (3.12) can be shown to reduce

to a set of simultaneous equations in triadiagonal form. These algebraic

equations can be inverted by applying the Thomas algorithm.

During the second half time step, Equation <3.12) is marched forward
to nw tmelevl n+l * Av

toanewtimelevelv =v + - using the relation given below:

ar 2 r AS n+l r(7- S + 2 - DF-NS t + (4 -r DF + - S
Yr AN n ss Yr (AN) n r

+--S )t+ + (N 2 -NS
Yr U s Tin Yr ns  2(AS))tN

r AN 8 AN
+(N 2 NSDF- -(2 r N S !DF N-i+1

. ...(S Nl-~n 2 AN Y SS)5 im,n-
1 (DF-- A S

A 21 N AS 2 2
-Yr N A S I m-l,n -r

( )(DF + 1) _

2 1 n+l t

Y- 2 Tr AN tSmn.'+l Av (3.13)

I
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where the starred (*) quantities are known from the previous half time

step calculation and the dependent variables with superscript (n+l) are

considered to be unknown in the Equation (3.13). Writing the derivatives

tSS and tS in second order accurate central difference form, the differential

Equation (3.13) can be solved in an identical manner to the star (*) step. The

solution procedure for the coordinate equation alternates between the

gconstant C and constant n directions in one complete time step. The

steady state solution is achieved as an asymptotic converged solution

to the unsteady Equation (3.10). Since the initial guessed coordinates

assumed for the iteration procedure are assumed to be conformal, the

initial conditions for t(I,n) at each grid point is taken to be 1.

Next we discuss the numerical solution of the Navier-Stokes equations

in optimal coordinates. However, rather than solving the complete equa-

tions we solve a parabolized version. The solution of the complete equa-

g tions should follow in a similar manner.

3. Solution of Parabolized Navier-Stokes Equations

The parabolized vorticity and streamfunction equations unlike the

boundary-layer equations, are coupled with the coordinate equation because

the coefficients ar' rp Yr and H are no longer functions of C only butr

are functions of n as well. This fact calls for the simultaneous treatment

of the flow Equations ((2.29)and (2.30)) and the coordinate Equation (3.10).

Therefore, the iterative scheme described in the case of boundary-layer

analysis is modified slightly to accomodate the simultaneous treatnent

of the flow equation, and the coordinate equation. Details of the schme 

are presented in the following.

41



I
I

I In order to solve the vorticity and streamfunction equations more

efficiently transformations of the independent variables are made. The

transformation relations are the same as given in case of the coordinate

equation and are given by the Equations (3.1) and (3.9). The only differ-

ence in the use of the relation (3.1) for the case of parabolized Navier-

IStokes analysis is in the value of the constant A, which, in this case
I is chosen to be 4.0 + 0.4 qw where qw = w e . Re is the Reynolds

number based on the nose radius of curvature, a and w is the value of

q at the wall. The dependence of the constant A on Re, in the stream-

wise stretching is introduced in order to achieve the desired flow field

resolution in the streamwise direction for different Reynolds numbers.

g The transformation relation (3.9) in the q direction has a viscous type

stretching built into it, such that it always places the viscous layer

9 in approximately the lower half of the unit square region of integration

while the inviscid flow is contained in the upper half. This type of flow

field resolution in the n direction is appropriate in light of the fact

that for all unseparated flow cases, as was mentioned in the case of

boundary-layer analysis, the viscous effects are confined within the

I region n < 5 or in the transformed variable N < 0.5. The transformation

relation (3.9) therefore allows one to obtain proper grid spacing in the

physical flow field near the wall, where the gradients of the flow vari-

ables are large as compared to their asymptotic values far away from the

wall. Various other advantages of the transformation relations (3.1)

I and (3.9) are elaborated on in the case of boundary-layer analysis and

will not be repeated here.
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Because of the boundary condition f -+ n - C as n -+ w, a new stream-

function h is defined such that

f = + n (3.15)

j The steady state streamfunction-vorticity equations in the transformed

variables can now be written as

(Nn) + Nnn (1 + RN ) = g (3.16)

and

1 2 -HN 2 r HS J
Ng H [ Nn 7  H- YrS

- s N+r ( +Ht + r H S 2

- --S S N r
+N ]gNNn + [ ( ) ( irn 2

2 ar % 2 a H 3 4 r 4 'r

-- - Nr - + -,_IS L + TNT,()

12 . HN LNnH 4 J r ESr H s
- y ) + r (n + h + Sth E Y (I + H

E r r Sr N rrS

12U 82 [2 E 2 !r ]s -0 .(3.17)
+ r  H

The corresponding boundary conditions are given in the following. The

no slip and zero injection conditions on the surface give

-0

and at -0 (3.18a,b)

ii--1
n

r
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The infinity boundary conditions are given by

n -

and as n- (3.19a,b)

g(Q,n) 0

At t - 0, symmetry is made use of to compute the vorticity and streaimfunction

along the stagnation plane.

The asymptotic boundary condition as { is given by Equation (3.16)

along with (3.17) evaluated as - -. Equation (3.16) remains the same

whereas (3.17) reduces to

(N )2 gNN + (n + + l)NngN + (1 - 20)(1 + iNn)g (3.20)

where 8 is the Falkner-Skan pressure gradient parameter and is a known

quantity for a given problem.

It is observed from Equations (3.16) and (3.17) that the streamfunction

and the vorticity equations are second-order partial differential equations

f with respect to n. Therefore two boundary conditions for each of the

dependent variables h and g are needed in order to integrate the equations.

There are three boundary conditions on h and one boundary condition on g.

These type of boundary conditions are not the most convenient ones for the

Thomas algorithm. However, the solution to the flow equations can be

obtained by a superposition method as described by Davis, U. Ghia and

K. Ghia, 1 6 by determining a coe-ficient C1 such that

g(t,n) = ClgH " E'n 3 + gp (3.21)
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with C1 given by

+(h P)

CI  an (3.22)
6 i;(p 1 )

an
where gH and g are the homogeneous and particular solutions respectively

of the vorticity Equation (3.17) and h and h are the particular solu-

tions of the streamfunction Equation (3.16) corresponding to the forcing

function gH(En) and g (,n).

The governing flow equations are therefore integrated along the

curves of constant t for all n, using the implicit finite difference

method of Blottner and Flugge-Lotz as described in the case of boundary-

layer analysis. Once the required convergence is achieved on the solution

vectors, the t(g,O) value is updated using the iterative relation (2.81).

With this surface boundary condition distribution on t, the coordinate

equation is integrated employing the two step time dependent ADI relaxation

method, as described previously in boundary-layer analysis. The converged

solution is then stored to calculate the new values of Jr a r S and Hr

to be used subsequently in the flow equations. Before starting a new iter-

ation in the flow equations after this step, the edge quantity E(&,-) is

checked for satisfaction of the condition of optimal coordinates, i.e.

I(M) - C, a constant. If this condition is not satisfied within a pres-

cribed accuracy limit, then the entire cycle is repeated to calculate a

new set of values for the solution vectors g, f and t.
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I This completes the method of solving the flow equations in optimal

coordinates including the generation of the optimal coordinates. The

application of the analysis to specific problems is discussed in the

following section.

I
I
I

I
I
I
I
I
I
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IV. APPLICATION TO SYMMETRIC TWO-DIMENSIONAL FLOW PROBLEMS

In order to demonstrate the application of the principles described

in the previous sections we will generate the solutions for two-

dimensional incompressible laminar symmetric flow. Two geometries are

considered as examples; the flow past a semi-infinite wedge, and the

flow past a semi-infinite thick flat-plate, see Figures 3a,b and 4 and 5

respectively. Boundary-layer as well as the parabolized vorticity-

streamfunction form of the flow equations are used for the present

analysis. Details of the analysis are presented in the following.

1. The Blunted Wedge Example

The two dimensional incompressible flow past a semi-infinite wedge

as shown in the Cartesian plane in Figure 3a is considered here. The

axis of the wedge is oriented in the direction such that the flow is

symmetric about the wedge axis. The body surface in the physical plane

I as shown in Figure 3a is mapped to the line q = 0 and the corresponding

flow in the physical (x,y) plane is mapped into a stagnation point

type flow which is the upper half of the plane (see Figure 3b). This

type of mapping is achieved by applying a Schwarz-Christoffel trans-

formation which results in

2

v (n+l) n+l
U 2 (4.1)

r

where - q + ip. The scale factor of the transformation is given

* by
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2 2 1-n

h - Id - Iq2+p21 (4.2)

r

The factor v/Ur appearing on the right hand side of Equation (4.1),

non-dimensionalizes the coordinates q and p. The n, appearing in the

exponent of the transformation relation (4.1) is related to the semi-

wedge angle 6 as

n = 7 (4.3)

Recognizing that the point (yoO) transforms to the point (qw,0),

(see Figures 3a and 3b), the nose radius of curvature a can be written,

using Newton's formula, as

2
l+n 1+n va -) (4.4)

r

where q is equal to qw at the wall. Defining the Reynolds number based

on the nose radius of curvature such that Re - U ra/v, it can be shown

from the relation (4.4) that the location of the wedge surface in the

transformed plane is given by

l+n
1-n[, Re- . (4.5)

It is observed from the equation (4.5) that keeping the Reynolds

number Re constant, the effects of body shape on the flow can be studied

by changing n, whereas keeping n fixed, the effects of Reynolds number

on the flow can be investigated by varying Re.
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It will be shown later that the conformal transformation used

here to transform the physical flow field into a stagnation point flow

in the conformal plane, allows one to obtain similarity type variables

and similarity solutions are recovered whenever similarity exists.

In addition, the downstream boundary conditions at infinity are

automatically satisfied. The mapping also allows one to obtain simpler

boundary conditions in relating the optimal (E,n) coordinates to

conformal (p,q) coordinates.

Since the numerical calculation is to be carried out in optimal

coordinates, the transformation relation can be rewritten in optimal

coordinates. Using the coordinate relation given in Equations (2.23)

and (2.24), the transformation relation reads in optimal coordinates

as

2
v l+n r i+nz T-- (-t +  (4.t)

r

and the scale factor h is given by

1-n
h2 + (t)211 +n(4.7)

r

It can be shown that the similarity solutions are recovered in the case

of a blunted wedge in terms of the present variables E and n if the
I

exponent n is related to the Falkner-Scan pressure gradient parameter

8 given by

2n2in+ (4.8)l+n
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It is interesting to note that the mapping given by the Equation (4.6)

yields the liziting cases of the thin flat plate and the vertical

wall when a = 0, Re = 0 and 8 = I and Re # 0 respectively.

The scale factor of the transformation in optimal coordinates

is rewritten in nondimensional form as

1-$

h = [(E2 t2 + (- 2)] 2 (4.9)

It is important to note that the independent variable n is defined

here (i.e. in Equation (4.9)), in such a way that n = 0 corresponds

to the value of the conformal coordinate q at the wall and it is

denoted by qw. With this new definition of the independent variable n,

the body is always placed at n = 0 in the optimal coordinate plane

and n = C represents the displacement surface in optimal coordinates.

The additional relations required for the solution of the governing

differential Equations (2.29) and (2.30) are given as follows

h (1-6) [E2 2 +E2 t +(2 + q(-~t
22 (4.10)

+ (- + q)21

and t

hn  (1-8) [2t t + (- + qw) ( 1 - n
__ .i t tt t2]  (4.11)
h [(2 t 2 + ( n + w2

Along the stagnation streamline, i.e. E - 0, the term hE /h appearing

in the E/EH term in the vorticity Equation (2.30) becomes undefined

and hence, must be evaluated with the proper limit process.

I
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The limit process gives

h h
iim (" ) =

E-0 h= h

Hence, _ q wn
h,(1-8) [t2  42 +--3 t t l

_ = t t (4.12)
h - IEWO (qw + n)2

In order to performa the boundary-layer analysis for the blunted

wedge oroblem, the coordinates are normalized with respect to the

nose radius of curvature a, at the stagnation point, such that the

wall location of the blunted wedge surface is given as

1qw= qw .(_)-
qn+l 1B)26(4.13)

2
a

This type of normalization is adopted in order to remove the explicit

apperance of the Reynolds number Re from the analysis.

The scale factor of the transformation can then be written as

1-8

-2 [ + E22 2 (4.14)

and the inverse scale factor H is given by

H 2
= - 2 - (4.15)
h (a + Et) InO
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Now the pressure gradient parameter Bi' appearing in the boundary

layer equation is given as

i-1) t 2 (t + t) (4.16)
(c + t =0

This completes the necessary details required to solve the flow equations.

The cooredinate equations required to generate optimal coordinates

are given by Equation (2.25) and the three boundary conditions are

given in Equations (2.27) through (2.28a,b). The fourth boundary

condition t( ,O) is to be determined iteratively and the iterative

scheme required to compute the missing boundary condition is given

in detail in Section II.

This completes the mathematical formulation of the blunted wedge

problem in optimal coordinates. The details of the numerical method

used to solve the governing differential equations are presented in

Section III.

2. The Blunted Plate Example

In this example problem, two dimensional symmetric flow past a

semi-infinite blunted plate is obtained in optimal coordinates. The

body geometry is shown in the physical (x,y) plane in Figure 4. The

body is mapped to the line q - 0 in the conformal plane C, as shown

in Figure Figure 5, by applying the Schwarz-Christoffel transformation

jand results in a relation given by
dz 2L 2 1/2
.T r _ (4.17a)

Id2
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Integration of (4 .17a) gives the transformation relation

2 U L 21/2 2U L -1r = [L ( n- )  + sin ) (4.17)
V 2U L

,/ r.

The x,y coordinates are nondimensionalized by the viscous length v/U
r

where v is the kinematic viscosity and U is some reference speed.r

Since the mapping is conformal, the scale factors in both directions

are the same and are given by

h2 2 2idz2
h 2 = h 2 . j (4.18)

1 2 d;

which gives for the present geometry

2 2 2 2 2 1/2
h =[(p + q _ ReL) + 4ReL q] (4.19)

where

UL

Re r 2
L V Tr

The Reynolds number is defined based on the nose radius of curvature

as Re - U ra/. The nose radius of curvature at the stagnation point

can be shown to be related to the thickness of the plate L, by the

following relation

(ReL + 2 3/2

a - (4.20)

where q. is the coordinate q at the body surface. The flow past

different body shapes can be studied by a suitable combination of the

I
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parameters ReL and qw, whereas the effects of Reynolds number can be

studied by varying Re, keeping ReL and % fixed.

The conformal mapping used here transforms the flow in the

physical (x,y) plane into a stagnation point flow in the conformal

(p,q) plane. The advantages of this type of transformation are the

same as mentioned in the blunted wedge example problem.

It is interesting to note that as a limiting case, as ReL  0,

the transformation (4.17b) represents the flow past a parabola which

corresponds to the flow past the thin semi-infinite flat plate in the

physical plane. Therefore the analysis includes the flow past the

thin semi-infinite flat plate as a special case as ReL - 0.

The governing differential equations and the boundary conditions

remain the same as given in the previous example problem by Equations

(-.5) through (2.81), except that in order to recover the correct

asymptotic form at downstream infinity, the value of a in Equations

(2.18) and (2.44) is set equal to zero to give the Blasius equation,

which is the appropriate downstream boundary condition for the blunted

plate problem.

The scale factor h, in optimal coordinates can be written as

222 2 Ti 2 1/2
h( ,n) 2 [(2t2 + (qw + n) 2- ReL) + 4ReL(a + T)] " (4.21)

=~ [L t t-~ -e/L

The additional relations required for the parabolized vorticity-

streamfunction Equations (2.29) and (2.30) are given as

H jr 1 . (4.22)

2 2
h 3 h)

r
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which can be written in optimal coordinates as

Yr 
(4.23)

( 2r [(2t2 + (qw+-) 2- Re) 2+ 4 ReL(qw+ )2]1/2

Also,

2t E 2+ ( n2)2-Re )(tt2 + t 2 E - q --)(+ t )) 2Re w a) - t

h [~2~ nn2
h[(E2 t2 + (qw + -)2_ReL)2 +4ReL(qw + 1) 2

SRL) Lwt (4.24)

and 22 2 
nt 2 ntn

hn t t

h 2t2 + (qw+a)2 ReL)2 + 4Re2(qw+ n)2
[(i L(+- -Re)

(4.25)

As previously, we need the following limit expression. Lim + 0

h /Eh can be shown to be equal to

[((qw+ n)2_ReL)t 2_(qw+ )n~ t  t ;))_2ReLwntt n t
h h t L 7 L~q+--t).-- 1

lim ( = t t
E 0 h [(qw + .n)2 + ReL] 2

t L (4.26)

For the boundary-layer analysis the coordinates (x,y) are normalized

with respect to the radius of curvature a. Then the transformation

relation (4.17b) in nondimensional form becomes

1 [ (b+ + b s in -  1  (4.27)

where

b = 2L . (4.28)ira
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Now defining a = qw/a1 /2 and substituting into the radius of

curvature expression, we can show that the body shape parameter a, In

the conformal plane, is related to the thickness of the plate in the

physical plane by the relation

a2/ 3 . b + a 2  (4.29)

The shape of the body for various values of the parameter a, is shown

in Figure 6. As a special case of the parameter a = 1, the trans-

formation relation (4.27) gives flow past a parabola.

The scale factor for the boundary-layer in optimal coordinates

is written as

h2 . [&4t4 + 2&2t2 (2 2 _ 2/3) + 4/3]i/2 (4.30)

The governing differential equations for the boundary-layer analysis

are the same as given in the previous example problem by Equations

(2.37) through (2.45) except that in the downstream infinity condition

(2.44), 8 is set equal to zero to give the appropriate downstream

boundary condition for the blunted plate problem.

The remaining relations required for the boundary-layer solution

are

H 2 H (t 4+22t 2(2a 2  2/3 )+a t2  , (4.31)I h ri-0
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34 + 4t3 t + (&t2 + 2 2_ 2/3 Et
B& = [+ - ! ] ) +

(4t4 +2 2t2 2_ 2/3) + 4/3t n=

(4.32)

and
Yr 2

H =- t (&,0) (4.33)r j2

r

As was mentioned in our first example problem, the coordinate

equations in this case remain the same as were given by Equations

(2.25) through (2.28), except for the surface boundary condition t( ,O).

Details of the determination of the surface boundary condition t(E,O)

are presented in Section II of this analysis.

This completes the mathematical modelling of the blunted plate

problem. Details of the solution procedure are discussed in the

section on numerical method of solution. The results of the present

analysis are discussed in the following section.

I

1
I
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V. RESULTS AND DISCUSSION

In the present study an effort has been made to demonstrate

that a set of optimal coordinates dependent on the displacement effect

can be generated numerically for two-dimensional symmetric incom-

pressible laminar flow past blunt and sharp nosed bodies. Various

critical aspects of the viscous flow analysis in optimal coordinates

for high as well as low Reynolds number were discussed in the previous

sections. The present investigation is therefore viewed as an initial

step for generating flow dependent coordinate systems numerically.

The present analysis has provided us with useful information in order

to understand and investigate the inviscid and viscous interaction

problem in a different manner.'

Present calculations were confined to flow past semi-infinite

bodies under conditions such that separation does not occur. The

reasons for choosing such body shapes are firstly, because they are

the easiest ones to analyze, flows involving separation, for example,

being much more difficult. Secondly, for comparison purposes the

simple body shapes such as a parabola, vertical wall and thin flat

plate, possess previously obtained accurate analytical or numerical

solutions which can be used as a basis for comparison.

The solutions were obtained using the governing differential

equations developed for the example problems in Section II and numerical

technique described in Section III. The solution steps for the coupled

set of flow equations and the coordinate equations are presented inI
3 58
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Figures (7-9). The results for specific example cases are discussed

in the following.

1. Boundary Laver Results in Optimal Coordinates

la. Blunted Wedges:

In the matheuttical formulation of the wedge problem for the

boundary-layer analysis in Section IV, it was shown that the flow past

different blunted wedge shapes can be characterized by a single

parameter B, related to the slope of the wedge at downstream infinity,

where 8 is the Falkner-Skan pressure gradient parameter. In the

present analysis, boundary-layer solutions are obtained for 8

between 0 and 1, where 8 = 1 represents flow against a vertical wall,

commonly known as Hiemenz flow and 8 - 0 represents the flow past a

parabolic cylinder.

Plots of the pressure gradient parameter 81, for various values

of the downstream Falkner-Skan pressure gradient parameter 8 are

presented in Figure 10. Figure 10 shows that the pressure gradient

for the case of the parabola approaches zero at downstream infinity

and therefore the Blasius solution for flow past a flat plate is the

correct solution asymptotically at downstream infinity. Figure 10

also shows the 8i distribution for other values of the downstream

Falkner-Skan parameter 6 which corresponds to increasing the downstream

asymptotic wedge angle. If the downstream wedge angle is increased

to 90, the Hiemenz flow or the flow past a vertical wall is obtained

and the pressure gradient parameter becomes constant over the wall

surface for this flow.
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The streamwise distributions of the skin-friction coefficient

g(p,w) are shown in Figure 11 including flow past the parabola

given by B = 0. For all values of B, the skin friction coefficient

attains at the stagnation point a value of 1.233 which is the exact

value of skin friction coefficient for the stagnation flow against

a vertical wall. For the case of a parabola, the skin friction approaches

the flat plate solution at downstream infinity. This is as it should

be, since the appropriate downstream flow in the case of parabola

is governed by the Blasius flat plate solution. With increasing B,

the skin friction coefficient approaches the corresponding Falkner-

Skan solution at downstream infinity. Observe that for $ = 0.7,

the skin friction profile is very close to that of the flow against a

vertical wall, giving an indication that the flow is approaching the

stagnation flow.

The displacement thickness functions for $ between 0 and 1 are

obtained in optimal coordinates and their values in conformal coor-

dinates are shown in Figure 12. Displacement thickness results obtained

at the stagnation point show very good agreement with those of

15 9
Davis as well as those of Van Dyke. The displacement thickness

for the case of a parabola also approaches asymptotically the appropriate

value obtained for the Blasius flat plate solution at downstream

J infinity. As expected, the displacement thickness approaches a

constant value as the downstream wedge angle is increased by increasing

the value of Falkner-Skan parameter B to 1. Since the displacement

3 thickness in conformal coordinates is constant, according to optimal
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coordinate theory, the conformal coordinates for stagnation flow

(i.e. for 0 - 1), are optimal coordinates.

lb. Blunted Plates:

It was previously shown in Section IV (see Figure 6) that for

boundary-layer analysis, the flow past the blunted plate is characterized

by a parameter a. Various body shapes for the blunted plate problem

are shown in Figure 6 with their corresponding values of the parameter a.

In the blunted plate case, a = 1 represents a flow past a parabola

and a - 0 represents the flow past a semi-infinite thick plate with

sharp corners. This type of blunt body is considered in order to

study the displacement flow past bodies with smooth as well as blunted

shoulders and to investigate the effects of such convex corner flows

on the optimal coordinate configuration.

The surface skin friction distributions shown in Figure 13 are

presented for the bluntness parameter a between 0.2 and 1. The skin

friction variation for flow past the parabola has already been discussed

in the case of the blunted wedge problem and the results of the same

are presented here for the sake of comparison with the skin friction

variationfor different values of the parameter a. Figure 6 shows

that decreasing the value of the parameter a, results in a body shape

having larger curvature around the corner. The viscous flow past such

bodies would experience larger and larger turning angles around the

corner. This fact is displayed in the skin friction plots, which show

that with decreasing values of a, the skin friction shows an earlier

drop, larger gradients, and a smaller region of adjustment to the
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downstream infinity value as compared to the skin friction variation

for flow past a parabolic surface. Similar features are also displayed

by other flow quantities such as pressure gradient and displacement

thickness for decreasing values of a, in Figures 14 and 15 respectively.

These characterstic features of the flow quantities such as are shown

in the skin friction and the displacement thickness are consistent

with the pressure gradient plots obtained for the viscous flow past

the corresponding body shapes, represented by the parameter a. One

of the flow cases which we will study further is the flow past a

blunt body represented by a = 0.2 which will turn out to be a case

near separation. A classical boundary-layer analysis of flow past a

body which is represented by a less than approximately 0.2 would

indicate the occurance of flow separation aft of the corner. This

fact has previously been observed by Davis14 in his interacting flow

analysis for high Reynolds number flow past a body represented by

a - 0.1. Considerable numerical difficulties were encountered in order

to obtain converged solution for the flow past a blunt body given by

a less than 0.2. The pressure gradient parameter in such cases reaches

limiting values below -0.199 and the shear stress drops to zero with

an infinite slope aft of the corner indicating the onset of separation

at that point and no solution could be achieved beyond the separation

point indicating that the present solution technique must be modified

if one wishes to compute separated flows correctly. We will see in the

later part of our discussion that the optimal coordinates for the case

of a - 0.2 exhibit critical behavior for this near separated flow case.
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1c. Optimal Coordinates for Blunted Wedges and Blunted Plates:

It was mentioned in the preceeding section that the displacement

thickness is constant for flow past a vertical wall (Hiemenz flow).

The condition for optimal coordinates requires that the displacement

thickness should be constant in optimal coordinates. This implies

that the conformal coordinate system should be optimal for the

stagnation flow. The validity of the statement is justified from

the fact that the coordinate equation for optimal coordinates yields

a constant solution equal to 1 for the coordinate function t(C,n)

in the entire flow field.

The optimal coordinate (,n) system and the conformal (p,q)

coordinate system for values of the wedge parameter a between 0.7

and 0.0 are presented in Figures 16 through 18. The optimal coordinates

for the wedge parameter a = 0.7 show little difference from the

conformal coordinate system as shown in Figure 16a because the flow

represented by B - 0.7 has characteristics very close to stagnation

flow. The differences between the two coordinate systems disappear

as we go far from the body which is obvious from the coordinate plots

of Figure 16b for flow past the same body shape. With a decrease of

the wedge angle at downstream infinity, thereby decreasing the para-

meter 8, the initial differences between the optimal coordinates and

the conformal coordinates near the surface of the body increase and

this difference dies out as we go far from the body. This can be

seen in the optimal coordinate plots shown in Figures 17a and 17b for

the flow given by the parameter 8 " 0.5. Another interesting feature
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displayed in the optimal coordinate plots for 8 = 0.5 in Figure 17a

I is that the variations in the n direction are larger than the

variations in the direction. Similar features are also exhibited

in the optimal coordinate plots for 8 = 0.3 as shown in Figures 18a

and 18b except that the optimal coordinates show larger initial

differences with respect to the conformal coordinates near the body

Isurface. This difference subsequently disappears as the downstream

conditions are reached. The optimal coordinates for the flow past

the parabola are presented in Figures 19a and 19b. The optimal

1 coordinates approach the corresponding conformal coordinate system

asymptotically at downstream infinity. This characteristic of the

I coordinate function is in complete agreement with the asymptotic

approach of the downstream condition of the displacement flow past a

parabola.

Next, the optimal coordinates are obtained for blunted plates

for various values of the parameter a. Typical optimal coordinates

are presented for a in the range between 0.2 and 0.7 in Figures 20

through 23. The plots of the coordinates near the surface of the

body are shown in Figures 20a, 21a, 22a, and 23a. There are larger

differences between the optimal coordinates and the corresponding

conformal coordinates near the surface. The differences between the

1two coordinates, as anticipated, disappear near downstream infinity.

1 This is clear from the plots of the coordinates shown in Figures 20b,

21b, 22b, and 23b. Also the gradients of the curve represented byI
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C (where C is a constant), near the surface and around the

shoulder region decrease with an increase of shoulder bluntness of

the blunt body.

2a. Parabolized Navier-Stokes Results in Optimal Coordinates:

The parabolized vorticity-stream function results are obtained

for the blunted plate and the blunted wedge problems for low as well as high

Reynolds number cases. The numerical solutions are obtained with a

step sizes of AS = 1/40 and AN = 1/100. For a few cases of the

problem parameters, the solutions are obtained with larger step

sizes of AS = 1/20 and AN - 1/60. In order to solve the coupled set

of coordinate and flow equations two different approaches of treating

the partial differential equations were explored. In one case

the solution of the parabolic vorticity-stream function equations,

and the * (star) level step of the ADI scheme to solve the coordinate

equations are carried out simultaneously. At each station represented

by = constant, the condition of the optimal coordinates is enforced

before advancing to the next station in the streamwise direction.

During this operation the (n+l) level coordinate distribution is kept

unaltered. Once the condition of optimal coordinates is satisfied by

the edge quantities of the flow equation in the entire flow field,

the (n+l) level step of the ADI scheme is performed. The above steps

are repeated to obtain the converged solution of the coordinate

equation.

In the second approach the flow equations are uncoupled from the

coordinate equation iteration by linearizing the coefficients dependent
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on the coordinate function t( ,n) by using the preceding iteration

value of the coordinate function. The condition of optimal coordinates

is not checked until the coordinate solutions are iterated to give

a converged solution. The flow charts of both the numerical approaches

are presented in Figures 8 and 9.

The first scheme described here was very successful in obtaining

accurate converged solution for the blunted wedge cases. Considerable

difficulty was encountered with this scheme in obtaining solutions

for the blunted plate problem. However, the second scheme was

successful in achieving converged solutions for the blunted plate cases.

In general, both schemes displayed poor convergence on the coordinate

equations for high Reynolds number flow cases, especially in the case

of the blunted plate problem.

The fictitious time step Av used in the ADI scheme was found to

vary with the body shape parameter 8 or a and the Reynolds number Re.

A time step of 10 was found to be optimum for obtaining a converged

solution of the problems for low and moderately high Reynolds numbers

of up to 100. Beyond this value of Reynolds number a larger time
t4

step was necessary. For example, for Reynolds number equal to 10 4, a

time step of 100 was used to obtain the converged solutions. It was

also observed that the convergence process was very much improved by

taking initially a larger time step and subsequently reducing it as

the iteration proceeded. A further improvement in convergence was

achieved by suitable averaging of the two levels of solutions and using

the averaged values of the solution vectors at the beginning of the next

iteration.
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2b. Blunted Wedges

The streamwise distributions of the vorticity function g(p,qw) at

the wall for the case of the parabola are presented in Figure 24 for

4
Reynolds numbers between 0 and 10 . A. the Reynolds number increases,

the value of the vorticity function g(p,qw) at the stagnation point

approaches the stagnation flow value given by the Hiemenz solution. At

Re - 104 the skin friction value approaches the stagnation flow value

of 1.233 and the Navier-Stokes solution matches with the present

boundary-layer solution at the stagnation point for the flow past a

parabola. The variations of the vorticity function for the thin flat

plate case, which is obtained from the flow past a parabola with

Re = 0 is also shown in Figure 24. A comparison between the present

results and those of Davis 15 for leading edge skin friction on a

4
parabola is given in Figure 25 for Reynolds numbers between 0.1 and 10

The agreement for all Reynolds numbers is good. There are small

differences between the two results at moderately high Reynolds number

between 300 and 1000 as shown in Table 1. Figures 26 and 27 show the

vorticity function distribution along the surface of the blunted

wedges for 8 - 0.7 and 0.5 respectively. Results of the present

calculations at the stagnation point for B = 0.7 and 0.5 agree well

with the corresponding results of Davis, 
U. Ghia and K. Ghia

1 6

obtained by solving the full Navier-Stokes equations. At downstream

infinity the results of the present calculations approach the boundary-

layer limit exactly.

6
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2c. Blunted Plates:

The blunted plate analysis using parabolized Navier-Stokes equa-

tions is characterized by two parameters, the bluntness parameter a

and the Reynolds number Re based on the nose radius of curvature at

the stagnation point. Figure 28 shows typical results for skin

friction for the blunt plate given by a = 0.7. Retaining the value

of a and increasing the Reynolds number Re, the shoulder influence is

further removed from the point (O,qw). The leading edge will appear

more like a vertical surface for the oncoming stream for high Reynolds

number flow cases and the flow in the vicinity of the point (O,qw )

will approach the stagnation flow. Therefore, it is found that with

an increase of the value of Re, the vorticity value at the point (O,qw )

approaches the stagnation flow value. The vorticity function g(p,qw)

drops along the surface from the stagnation point value to the

Blasius value for a flat plate at downstream infinity. Decreasing

the value of the parameter a decreases the bluntness of the shoulder.

The skin friction distribution for a = 0.5 as shown in Figure 29

displays larger gradients and an earlier drop from the stagnation point

value as compared to the skin friction distribution for the parameter

a 0.7 for the same Reynolds number.

2d. Optimal Coordinates for Blunted Wedges and Blunted Plates:

In the case of boundary-layer analysis we have analyzed the effects

-4* bodv shape parameter on the optimal coordinates. In this case

-0, .'f varying the Reynolds number Re have been investigated.

, - r1 nates for flow past blunted wedges and blunted plates

AI I

-|=



have been obtained for laminar unseparated flow cases. The coordinate

calculations were specialized to the limiting cases of flow past

a parabolic cylinder, the thin flat plate and the flow against the

vertical wall.

The streamwise distributions of the coordinate function for the

case of a parabola are shown in Figure 30a for various Reynolds

4
numbers Re, which vary from 0 to 10 . The coordinate function t(E,O)

monotonically approaches the correct downstream condition at infinity.

With increasing Re, the variations approach the boundary-layer

distribution and results of t(E,0) match exactly with the boundary-

o4
layer solution at Re = 10 as shown in Figure 30b, except near the

leading edge. For the case of a thin flat plate, the optimal

coordinates are obtained by setting Re = 0 in the parabola problem.

Results of the surface distribution of t(C,n) for the thin flat plate

are also shown along with the results for the parabola in Figure 30a.

Effects of Re on the optimal coordinates for increasing value of the

downstream wedge angle are presented in Figures 31 and 32 for wedge

parameters of 8 - 0.3 and 0.5, respectively. Similar features as

described in the case of the parabola are observed in these cases.

The coordinate diszribution for 8 = 0.7, which represents a flow

closer to a stagnation flow, is shown in Figure 33. As anticipated,

the parabolized Navier-Stokes solutions agree with the boundary-layer

solutions at lower Reynolds number than the cases discussed earlier.

The optimal coordinates were obtained for the blunted plate cases

for Reynolds number between 0.1 and 100. Reynolds numbers larger than

II
69MW "-.VWL



a value of 100 were not obtained because of poor convergence of the

present numerical scheme. Typical plots of the surface value of the

coordinate function are shown in Figures 34 and 35 for a - 0.7 and

0.5 and for Reynolds numbers between 0.1 and 100. In all these cases

with increasing values of Re, the coordinate function at the surface

tends to assume a boundary-layer variation. Since a = 1 represents

the case of a parabola, the optimal coordinate results for this case

have already been discussed along with the blunted wedge cases and

will not be repeated here.

The conformal and the optimal coordinate plots for the thin flat plate

and the parabola are shown in Figures 36(a,b) and 37(a,b) respectively.

The initial differences between the two coordinate systems, such as

are observed in Figure 36a for the flat plate case and in Figure 37a

for the case of a parabola, tend to reduce as we go further downstream

from the body surface. This is clear from the plots shown in Figures-

36b and 37b.

Figure 38a shows the conformal and the optimal coordinates near the

surface of a blunted wedge represented by 0 - 0.5 and for Reynolds

number Re - 100. Further downstream of the blunted wedge surface,

the optimal coordinates,.as shown in Figure 38b, tend to merge with

the corresponding conformal coordinates.
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VI. CONCLUSIONS

In the present analysis of viscous flow, it has been successfully

demonstrated that it is possible to numerically generate a particular

set of flow dependent coordinates called optimal coordinates. Results

of the integration of these coordinate equations reveal that the

optimal coordinates used here may be viewed as a generalized form of

conformal coordinates. The optimal coordinates considered here

automatically degenerate into convenient sets of coordinates for

specific flow fields; for example, in the case of first-order boundary-

layer flow past a thin flat plate, the optimal coordinates degenerate

into parabolic coordinates, which are the most natural form of the

coordinates for the thin flat plate. Similarly for the case of flow

against a vertical wall, the optimal coordinates become simple

Cartesian coordinates, for both, the boundary-layer flow and the

Navier-Stokes flow.

The advantages of viscous flow analysis in optimal coordinates

are as follows. Firstly, the boundary-layer solution obtained in

optimal coordinates is uniformly valid throughout the entire flowfield.

Secondly, similarity conditions are automatically satisfied when

similarity exists, with the present form of the coordinates.

The results of the optimal coordinate calculations using parabolized

Navier-Stokes equations for the case of the parabola and blunted wedges

have shown excellent agreement with the existing results using full

Navier-Stokes equations for all Reynolds numbers. This indicates
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that the parabolic approximation to the Navier-Stokes equations

is a more accurate representation of the full Navier-Stokes equations

if the equations are generated in optimal coordinates. The works

of Davis1 5 and U. Ghia and Davis3 1 which used the parabolized Navier-

Stokes equations in conformal coordinates (which are semi-optimal

in nature) have shown reasonable agreement with full Navier-Stokes

results even for low Reynolds numbers, and therefore it was to be

expected that the use of optimal coordinates in the parabolic form

of the Navier-Stokes equations would further improve the results.

The results of the present calculations verify this assumption.

The governing differential equations and the numerical scheme

developed in the present study for boundary-layer analysis was found

to be successful in predicting first order optimal coordinates.

Present numerical calculations showed that the cross-derivative

term O, in the coordinate equation can be treated explicity or

implicitly in the numerical solution of the coordinate equations for

boundary-layer analysis, whereas it was found to be essential to

treat the same cross-derivative term $ implicitly for the parabolized

Navier-Stokes analysis for the low Reynolds number cases.

In the parabolized Navier-Stokes analysis, the coordinate

equation solution scheme encountered certain difficulties which are

worth mentioning. The first iterative scheme mentioned in the parabolic

Navier-Stokes analysis displayed poor convergence of the solution of

the coordinate equation for high Reynolds numbers. However the use of

the second or the uncoupled iterative scheme was found to improve
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the convergence of the problem for most blunt body cases. It was

also observed in general that the relaxation process of the coordinate

equation becomes very sensitive to the fictitious time step, Av,

and the initialization process of the coordinate function for high

Reynolds number cases. While the second scheme enjoys a greater

flexibility of choice of the time step Av and the initialization

process of the coordinate function as compared to the first, diffi-

culties were still encountered for Reynolds numbers greater than

100 for blunted plate problems. Therefore a future effort should

be made to resolve the problem of poor convergence for high Reynolds

number.
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Reynolds Number Leading Edge Skin Friction

g(0, Re")

Davis (1972)
Re Present Results Full Navier-

Stokes Results

0.0 0.529 0.533

0.1 0.562 0.563

0.3 0.583 0.586

1 0.628 0.629

3 0.694 0.694

10 0.793 0.793

30 0.899 0.899

100 1.009 1.009

300 1.083 1.089

1000 1.142 1.150

3000 1.182 1.186

10000. 1.212 1.209

TABLE 1. COMPARISON W Ir OTH RESULTS.
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